Archive for Januari 2017

Senin, 16 Januari 2017
DATA MINING
Pengertian data mining?
Pengertian Data Mining menurut Para Ahli
Pengertian data mining berdasarkan (JK06) adalah proses mengekstraksi pola-pola yang menarik (tidak remeh-temeh, implisit, belum diketahui sebelumnya, dan berpotensi untuk bermanfaat) dari data yang berukuran besar. Definisi data mining dari Adelman. pengertian data mining adalah proses pencarian pola data yang tidak diketahui atau tidak diperkirakan sebelumnya.
Pengertian data mining menurut Gartner Group, data mining sebagai suatu proses menemukan hubungan yang berarti, pola, dan kecenderungan dengan memeriksa dalam sekumpulan besar data yg tersimpan dalam penyimpanan dengan menggunakan teknik pengenalan pola seperti teknik statisik dan matematika.
Pramudiono (2006) mengemukakan bahwa pengertian data mining adalah adalah serangkaian proses untuk menggali nilai tambah dari suatu kumpulan data berupa pengetahuan yang selama ini tidak diketahui secara manual.
Lalu Larose berpendapat bahwa data mining adalah bidang yang digabung dari beberapa bidang keilmuan yang menyatukan teknik dari pembelajaran mesin, pengenalan pola, statistik, database, dan visualisasi untuk pengenalan permasalahan pengambilan informasi dari database yang besar.
Pengertian data mining menurut Jiawei bahwa  data mining merupakan pemilihan atau “menambang” pengetahuan dari jumlah data yang banyak.
Definisi data mining menurut Berry bahwa data mining adalah aktivitas mengeksplorasi dan menganalisis data jumlah yang besar untuk menemukan pattern (pola) dan rule (aturan) yang berarti.
Hoffer dan McFadden mengemukakan bahwa pengertian  data mining adalah penemuan pengetahuan dengan menggunakan teknik-teknik yang tergabung dari statistik, tradisional, kecerdasan dan grafik komputer.
Pengertian data mining menurut Turban,dkk.(2005) data mining adalah proses yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan mesin learning untuk mengekstraksi dan mengidentifikasi informasi yang bermanfaat dan pengetahuan yang terkait berbagai database besar (baca pengertian database).
Istilah Istilah khusus dalam Data Mining
         Data cleaning (untuk menghilangkan noise data yang tidak konsisten)
         Data integration (di mana sumber data yang terpecah dapat disatukan)
         Data selection (di mana data yang relevan dengan tugas analisis dikembalikan ke dalam database)
         Data transformation (di mana data berubah atau bersatu menjadi bentuk yang tepat untuk menambang dengan ringkasan performa atau operasi agresi)
         Data mining (proses esensial di mana metode yang intelejen digunakan untuk mengekstrak pola data) – Pattern evolution (untuk mengidentifikasi pola yang benar-benar menarik yang mewakili pengetahuan berdasarkan atas beberapa tindakan yang menarik)
         Knowledge presentation (di mana gambaran teknik visualisasi dan pengetahuan digunakan untuk memberikan pengetahuan yang telah ditambang kpada user).
Rancangan bangun dari data mining yang khas memiliki beberapa komponen utama yaitu : – Database, data warehouse, atau tempat penyimpanan informasi lainnya. – Server database atau data warehouse. – Knowledge base – Data mining engine. – Pattern evolution module. – Graphical user interface.
Langkah langkah dalam data mining
a. Pembersihan data. Biasanya terdapat data yang kurang bagus untuk dimasukkan dalam kelengkapan data perusahaan karena hanya akan dianggap tidak valid bahkan untuk data yang hilang. Sehingga data yang seperti itu lebih baik dibuang.
b. Integrasi data
c. Transformasi data : Beberapa teknik data mining memerlukan format data yang khusus sebelum bisa digunakan dan disebarluaskan. Dalam tahap ini, dilakukan pula pemilihan data yang dibutuhkan oleh teknik data mining yang akan dipakai. Tahap inilah yang akan menentukan kualitas dari data mining.
d. Aplikasi teknik data mining
Ini merupakan salah satu langkah dari proses data mining. Gunakan teknik data mining yang sesuai dengan hasil yang dibutuhkan.
e. Evaluasi pola yang ditemukan: Dalam tahap ini hasil dari teknik data mining berupa pola pola yang khas maupun model prediksi dievaluasi untuk menilai apakah hipotesis yang ada memang tercapai.
e. Presentasi pola
Tahap terakhir dari proses data mining adalah bagaimana formulasi keputusan atau aksi dari hasil analisis dari data mining. Dalam presentasi ini, visualisasi juga dapat membantu mengkomunikasikan hasil data mining.
Cotoh data mining
Contoh Data Mining
Sebagai cabang ilmu baru di bidang komputer (lihat artikel sebelumnya berjudul ‘Data Mining’) cukup banyak penerapan yang dapat dilakukann oleh Data Mining. Apalagi ditunjang ke-kaya-an dan ke-anekaragam-an berbagai bidang ilmu (artificial intelligence, database, statistik, pemodelan matematika, pengolahan citra dsb.) membuat penerapan data mining menjadi makin luas. Di bidang apa saja penerapan data mining dapat dilakukan? Artikel singkat ini berusaha memberikan jawabannya.
Analisa Pasar dan Manajemen
Untuk analisa pasar, banyak sekali sumber data yang dapat digunakan seperti transaksi kartu kredit, kartu anggota club tertentu, kupon diskon, keluhan pembeli, ditambah dengan studi tentang gaya hidup publik.
Beberapa solusi yang bisa diselesaikan dengan data mining diantaranya:
• Menembak target pasar
Data mining dapat melakukan pengelompokan (clustering) dari model-model pembeli dan melakukan klasifikasi terhadap setiap pembeli sesuai dengan karakteristik yang diinginkan seperti kesukaan yang sama, tingkat penghasilan yang sama, kebiasaan membeli dan karakteristik lainnya.
• Melihat pola beli pemakai dari waktu ke waktu
Data mining dapat digunakan untuk melihat pola beli seseorang dari waktu ke waktu. Sebagai contoh, ketika seseorang menikah bisa saja dia kemudian memutuskan pindah dari single account ke joint account (rekening bersama) dan kemudian setelah itu pola beli-nya berbeda dengan ketika dia masih bujangan.
• Cross-Market Analysis
Kita dapat memanfaatkan data mining untuk melihat hubungan antara penjualan satu produk dengan produk lainnya. Berikut ini saya sajikan beberapa contoh:
o Cari pola penjualan Coca Cola sedemikian rupa sehingga kita dapat mengetahui barang apa sajakah yang harus kita sediakan untuk meningkatkan penjualan Coca Cola?
o Cari pola penjualan IndoMie sedemikian rupa sehingga kita dapat mengetahui barang apa saja yang juga dibeli oleh pembeli IndoMie. Dengan demikian kita bisa mengetahui dampak jika kita tidak lagi menjual IndoMie.
o Cari pola penjualan
• Profil Customer
Data mining dapat membantu Anda untuk melihat profil customer/pembeli/nasabah sehingga kita dapat mengetahui kelompok customer tertentu suka membeli produk apa saja.
• Identifikasi Kebutuhan Customer
Anda dapat mengidentifikasi produk-produk apa saja yang terbaik untuk tiap kelompok customer dan menyusun faktor-faktor apa saja yang kira-kira dapat menarik customer baru untuk bergabung/membeli.
• Menilai Loyalitas Customer
VISA International Spanyol menggunakan data mining untuk melihat kesuksesan program-program customer loyalty mereka. Anda bisa lihat di www.visa.es/ingles/info/300300.html
• Informasi Summary
Anda juga dapat memanfaatkan data mining untuk membuat laporan summary yang bersifat multi-dimensi dan dilengkapi dengan informasi statistik lainnya.
Analisa Perusahaan dan Manajemen Resiko
• Perencanaan Keuangan dan Evaluasi Aset
Data Mining dapat membantu Anda untuk melakukan analisis dan prediksi cash flow serta melakukan contingent claim analysis untuk mengevaluasi aset. Selain itu Anda juga dapat menggunakannya untuk analisis trend.
• Perencanaan Sumber Daya (Resource Planning)
Dengan melihat informasi ringkas (summary) serta pola pembelanjaan dan pemasukan dari masing-masing resource, Anda dapat memanfaatkannya untuk melakukan resource planning.
• Persaingan (Competition)
o Sekarang ini banyak perusahaan yang berupaya untuk dapat melakukan competitive intelligence. Data Mining dapat membantu Anda untuk memonitor pesaing-pesaing Anda dan melihat market direction mereka.
o Anda juga dapat melakukan pengelompokan customer Anda dan memberikan variasi harga/layanan/bonus untuk masing-masing grup.
o Menyusun strategi penetapan harga di pasar yang sangat kompetitif. Hal ini diterapkan oleh perusahaan minyak REPSOL di Spanyol dalam menetapkan harga jual gas di pasaran.
Telekomunikasi
Sebuah perusahaan telekomunikasi menerapkan data mining untuk melihat dari jutaan transaksi yang masuk, transaksi mana sajakah yang masih harus ditangani secara manual (dilayani oleh orang). Tujuannya tidak lain adalah untuk menambah layanan otomatis khusus untuk transaksi-transaksi yang masih dilayani secara manual. Dengan demikian jumlah operator penerima transaksi manual tetap bisa ditekan minimal.
Keuangan
Financial Crimes Enforcement Network di Amerika Serikat baru-baru ini menggunakan data mining untuk me-nambang trilyunan dari berbagai subyek seperti property, rekening bank dan transaksi keuangan lainnya untuk mendeteksi transaksi-transaksi keuangan yang mencurigakan (seperti money laundry). Mereka menyatakan bahwa hal tersebut akan susah dilakukan jika menggunakan analisis standar. Anda bisa lihat di www.senate.gov/~appropriations/treasury/testimony/sloan.htm. Mungkin sudah saatnya juga Badan Pemeriksa Keuangan Republik Indonesia menggunakan teknologi ini untuk mendeteksi aliran dana BLBI.
Asuransi
Australian Health Insurance Commision menggunakan data mining untuk mengidentifikasi layanan kesehatan yang sebenarnya tidak perlu tetapi tetap dilakukan oleh peserta asuransi. Hasilnya? Mereka berhasil menghemat satu juta dollar per tahunnya. Anda bisa lihat di www.informationtimes.com.au/data-sum.htm. Tentu saja ini tidak hanya bisa diterapkan untuk asuransi kesehatan, tetapi juga untuk berbagai jenis asuransi lainny
Kelebihan dan kekurangan
Kelebihan Data Mining :
1. Kemampuan dalam mengolah data dalam jumlah yang besar.
2. Pencarian Data secara otomatis.

Kekurangan Data Mining :
1. Kendala Database ( Garbage in garbage out ).
2. Tidak bisa melakukan analisa sendiri.

Kesimpulan
Data mining adalah disiplin ilmu yang mempelajari metode untuk mengekstrak pengetahuan atau menemukan pola dari suatu data sehingga sering disebut knowledge discovery in database






DATA MINING

Posted by Unknown
DATA MINING
Pengertian data mining?
Pengertian Data Mining menurut Para Ahli
Pengertian data mining berdasarkan (JK06) adalah proses mengekstraksi pola-pola yang menarik (tidak remeh-temeh, implisit, belum diketahui sebelumnya, dan berpotensi untuk bermanfaat) dari data yang berukuran besar. Definisi data mining dari Adelman. pengertian data mining adalah proses pencarian pola data yang tidak diketahui atau tidak diperkirakan sebelumnya.
Pengertian data mining menurut Gartner Group, data mining sebagai suatu proses menemukan hubungan yang berarti, pola, dan kecenderungan dengan memeriksa dalam sekumpulan besar data yg tersimpan dalam penyimpanan dengan menggunakan teknik pengenalan pola seperti teknik statisik dan matematika.
Pramudiono (2006) mengemukakan bahwa pengertian data mining adalah adalah serangkaian proses untuk menggali nilai tambah dari suatu kumpulan data berupa pengetahuan yang selama ini tidak diketahui secara manual.
Lalu Larose berpendapat bahwa data mining adalah bidang yang digabung dari beberapa bidang keilmuan yang menyatukan teknik dari pembelajaran mesin, pengenalan pola, statistik, database, dan visualisasi untuk pengenalan permasalahan pengambilan informasi dari database yang besar.
Pengertian data mining menurut Jiawei bahwa  data mining merupakan pemilihan atau “menambang” pengetahuan dari jumlah data yang banyak.
Definisi data mining menurut Berry bahwa data mining adalah aktivitas mengeksplorasi dan menganalisis data jumlah yang besar untuk menemukan pattern (pola) dan rule (aturan) yang berarti.
Hoffer dan McFadden mengemukakan bahwa pengertian  data mining adalah penemuan pengetahuan dengan menggunakan teknik-teknik yang tergabung dari statistik, tradisional, kecerdasan dan grafik komputer.
Pengertian data mining menurut Turban,dkk.(2005) data mining adalah proses yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan mesin learning untuk mengekstraksi dan mengidentifikasi informasi yang bermanfaat dan pengetahuan yang terkait berbagai database besar (baca pengertian database).
Istilah Istilah khusus dalam Data Mining
         Data cleaning (untuk menghilangkan noise data yang tidak konsisten)
         Data integration (di mana sumber data yang terpecah dapat disatukan)
         Data selection (di mana data yang relevan dengan tugas analisis dikembalikan ke dalam database)
         Data transformation (di mana data berubah atau bersatu menjadi bentuk yang tepat untuk menambang dengan ringkasan performa atau operasi agresi)
         Data mining (proses esensial di mana metode yang intelejen digunakan untuk mengekstrak pola data) – Pattern evolution (untuk mengidentifikasi pola yang benar-benar menarik yang mewakili pengetahuan berdasarkan atas beberapa tindakan yang menarik)
         Knowledge presentation (di mana gambaran teknik visualisasi dan pengetahuan digunakan untuk memberikan pengetahuan yang telah ditambang kpada user).
Rancangan bangun dari data mining yang khas memiliki beberapa komponen utama yaitu : – Database, data warehouse, atau tempat penyimpanan informasi lainnya. – Server database atau data warehouse. – Knowledge base – Data mining engine. – Pattern evolution module. – Graphical user interface.
Langkah langkah dalam data mining
a. Pembersihan data. Biasanya terdapat data yang kurang bagus untuk dimasukkan dalam kelengkapan data perusahaan karena hanya akan dianggap tidak valid bahkan untuk data yang hilang. Sehingga data yang seperti itu lebih baik dibuang.
b. Integrasi data
c. Transformasi data : Beberapa teknik data mining memerlukan format data yang khusus sebelum bisa digunakan dan disebarluaskan. Dalam tahap ini, dilakukan pula pemilihan data yang dibutuhkan oleh teknik data mining yang akan dipakai. Tahap inilah yang akan menentukan kualitas dari data mining.
d. Aplikasi teknik data mining
Ini merupakan salah satu langkah dari proses data mining. Gunakan teknik data mining yang sesuai dengan hasil yang dibutuhkan.
e. Evaluasi pola yang ditemukan: Dalam tahap ini hasil dari teknik data mining berupa pola pola yang khas maupun model prediksi dievaluasi untuk menilai apakah hipotesis yang ada memang tercapai.
e. Presentasi pola
Tahap terakhir dari proses data mining adalah bagaimana formulasi keputusan atau aksi dari hasil analisis dari data mining. Dalam presentasi ini, visualisasi juga dapat membantu mengkomunikasikan hasil data mining.
Cotoh data mining
Contoh Data Mining
Sebagai cabang ilmu baru di bidang komputer (lihat artikel sebelumnya berjudul ‘Data Mining’) cukup banyak penerapan yang dapat dilakukann oleh Data Mining. Apalagi ditunjang ke-kaya-an dan ke-anekaragam-an berbagai bidang ilmu (artificial intelligence, database, statistik, pemodelan matematika, pengolahan citra dsb.) membuat penerapan data mining menjadi makin luas. Di bidang apa saja penerapan data mining dapat dilakukan? Artikel singkat ini berusaha memberikan jawabannya.
Analisa Pasar dan Manajemen
Untuk analisa pasar, banyak sekali sumber data yang dapat digunakan seperti transaksi kartu kredit, kartu anggota club tertentu, kupon diskon, keluhan pembeli, ditambah dengan studi tentang gaya hidup publik.
Beberapa solusi yang bisa diselesaikan dengan data mining diantaranya:
• Menembak target pasar
Data mining dapat melakukan pengelompokan (clustering) dari model-model pembeli dan melakukan klasifikasi terhadap setiap pembeli sesuai dengan karakteristik yang diinginkan seperti kesukaan yang sama, tingkat penghasilan yang sama, kebiasaan membeli dan karakteristik lainnya.
• Melihat pola beli pemakai dari waktu ke waktu
Data mining dapat digunakan untuk melihat pola beli seseorang dari waktu ke waktu. Sebagai contoh, ketika seseorang menikah bisa saja dia kemudian memutuskan pindah dari single account ke joint account (rekening bersama) dan kemudian setelah itu pola beli-nya berbeda dengan ketika dia masih bujangan.
• Cross-Market Analysis
Kita dapat memanfaatkan data mining untuk melihat hubungan antara penjualan satu produk dengan produk lainnya. Berikut ini saya sajikan beberapa contoh:
o Cari pola penjualan Coca Cola sedemikian rupa sehingga kita dapat mengetahui barang apa sajakah yang harus kita sediakan untuk meningkatkan penjualan Coca Cola?
o Cari pola penjualan IndoMie sedemikian rupa sehingga kita dapat mengetahui barang apa saja yang juga dibeli oleh pembeli IndoMie. Dengan demikian kita bisa mengetahui dampak jika kita tidak lagi menjual IndoMie.
o Cari pola penjualan
• Profil Customer
Data mining dapat membantu Anda untuk melihat profil customer/pembeli/nasabah sehingga kita dapat mengetahui kelompok customer tertentu suka membeli produk apa saja.
• Identifikasi Kebutuhan Customer
Anda dapat mengidentifikasi produk-produk apa saja yang terbaik untuk tiap kelompok customer dan menyusun faktor-faktor apa saja yang kira-kira dapat menarik customer baru untuk bergabung/membeli.
• Menilai Loyalitas Customer
VISA International Spanyol menggunakan data mining untuk melihat kesuksesan program-program customer loyalty mereka. Anda bisa lihat di www.visa.es/ingles/info/300300.html
• Informasi Summary
Anda juga dapat memanfaatkan data mining untuk membuat laporan summary yang bersifat multi-dimensi dan dilengkapi dengan informasi statistik lainnya.
Analisa Perusahaan dan Manajemen Resiko
• Perencanaan Keuangan dan Evaluasi Aset
Data Mining dapat membantu Anda untuk melakukan analisis dan prediksi cash flow serta melakukan contingent claim analysis untuk mengevaluasi aset. Selain itu Anda juga dapat menggunakannya untuk analisis trend.
• Perencanaan Sumber Daya (Resource Planning)
Dengan melihat informasi ringkas (summary) serta pola pembelanjaan dan pemasukan dari masing-masing resource, Anda dapat memanfaatkannya untuk melakukan resource planning.
• Persaingan (Competition)
o Sekarang ini banyak perusahaan yang berupaya untuk dapat melakukan competitive intelligence. Data Mining dapat membantu Anda untuk memonitor pesaing-pesaing Anda dan melihat market direction mereka.
o Anda juga dapat melakukan pengelompokan customer Anda dan memberikan variasi harga/layanan/bonus untuk masing-masing grup.
o Menyusun strategi penetapan harga di pasar yang sangat kompetitif. Hal ini diterapkan oleh perusahaan minyak REPSOL di Spanyol dalam menetapkan harga jual gas di pasaran.
Telekomunikasi
Sebuah perusahaan telekomunikasi menerapkan data mining untuk melihat dari jutaan transaksi yang masuk, transaksi mana sajakah yang masih harus ditangani secara manual (dilayani oleh orang). Tujuannya tidak lain adalah untuk menambah layanan otomatis khusus untuk transaksi-transaksi yang masih dilayani secara manual. Dengan demikian jumlah operator penerima transaksi manual tetap bisa ditekan minimal.
Keuangan
Financial Crimes Enforcement Network di Amerika Serikat baru-baru ini menggunakan data mining untuk me-nambang trilyunan dari berbagai subyek seperti property, rekening bank dan transaksi keuangan lainnya untuk mendeteksi transaksi-transaksi keuangan yang mencurigakan (seperti money laundry). Mereka menyatakan bahwa hal tersebut akan susah dilakukan jika menggunakan analisis standar. Anda bisa lihat di www.senate.gov/~appropriations/treasury/testimony/sloan.htm. Mungkin sudah saatnya juga Badan Pemeriksa Keuangan Republik Indonesia menggunakan teknologi ini untuk mendeteksi aliran dana BLBI.
Asuransi
Australian Health Insurance Commision menggunakan data mining untuk mengidentifikasi layanan kesehatan yang sebenarnya tidak perlu tetapi tetap dilakukan oleh peserta asuransi. Hasilnya? Mereka berhasil menghemat satu juta dollar per tahunnya. Anda bisa lihat di www.informationtimes.com.au/data-sum.htm. Tentu saja ini tidak hanya bisa diterapkan untuk asuransi kesehatan, tetapi juga untuk berbagai jenis asuransi lainny
Kelebihan dan kekurangan
Kelebihan Data Mining :
1. Kemampuan dalam mengolah data dalam jumlah yang besar.
2. Pencarian Data secara otomatis.

Kekurangan Data Mining :
1. Kendala Database ( Garbage in garbage out ).
2. Tidak bisa melakukan analisa sendiri.

Kesimpulan
Data mining adalah disiplin ilmu yang mempelajari metode untuk mengekstrak pengetahuan atau menemukan pola dari suatu data sehingga sering disebut knowledge discovery in database






DATA MINING

Posted by Unknown
DATA MINING
Pengertian data mining?
Pengertian Data Mining menurut Para Ahli
Pengertian data mining berdasarkan (JK06) adalah proses mengekstraksi pola-pola yang menarik (tidak remeh-temeh, implisit, belum diketahui sebelumnya, dan berpotensi untuk bermanfaat) dari data yang berukuran besar. Definisi data mining dari Adelman. pengertian data mining adalah proses pencarian pola data yang tidak diketahui atau tidak diperkirakan sebelumnya.
Pengertian data mining menurut Gartner Group, data mining sebagai suatu proses menemukan hubungan yang berarti, pola, dan kecenderungan dengan memeriksa dalam sekumpulan besar data yg tersimpan dalam penyimpanan dengan menggunakan teknik pengenalan pola seperti teknik statisik dan matematika.
Pramudiono (2006) mengemukakan bahwa pengertian data mining adalah adalah serangkaian proses untuk menggali nilai tambah dari suatu kumpulan data berupa pengetahuan yang selama ini tidak diketahui secara manual.
Lalu Larose berpendapat bahwa data mining adalah bidang yang digabung dari beberapa bidang keilmuan yang menyatukan teknik dari pembelajaran mesin, pengenalan pola, statistik, database, dan visualisasi untuk pengenalan permasalahan pengambilan informasi dari database yang besar.
Pengertian data mining menurut Jiawei bahwa  data mining merupakan pemilihan atau “menambang” pengetahuan dari jumlah data yang banyak.
Definisi data mining menurut Berry bahwa data mining adalah aktivitas mengeksplorasi dan menganalisis data jumlah yang besar untuk menemukan pattern (pola) dan rule (aturan) yang berarti.
Hoffer dan McFadden mengemukakan bahwa pengertian  data mining adalah penemuan pengetahuan dengan menggunakan teknik-teknik yang tergabung dari statistik, tradisional, kecerdasan dan grafik komputer.
Pengertian data mining menurut Turban,dkk.(2005) data mining adalah proses yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan mesin learning untuk mengekstraksi dan mengidentifikasi informasi yang bermanfaat dan pengetahuan yang terkait berbagai database besar (baca pengertian database).
Istilah Istilah khusus dalam Data Mining
         Data cleaning (untuk menghilangkan noise data yang tidak konsisten)
         Data integration (di mana sumber data yang terpecah dapat disatukan)
         Data selection (di mana data yang relevan dengan tugas analisis dikembalikan ke dalam database)
         Data transformation (di mana data berubah atau bersatu menjadi bentuk yang tepat untuk menambang dengan ringkasan performa atau operasi agresi)
         Data mining (proses esensial di mana metode yang intelejen digunakan untuk mengekstrak pola data) – Pattern evolution (untuk mengidentifikasi pola yang benar-benar menarik yang mewakili pengetahuan berdasarkan atas beberapa tindakan yang menarik)
         Knowledge presentation (di mana gambaran teknik visualisasi dan pengetahuan digunakan untuk memberikan pengetahuan yang telah ditambang kpada user).
Rancangan bangun dari data mining yang khas memiliki beberapa komponen utama yaitu : – Database, data warehouse, atau tempat penyimpanan informasi lainnya. – Server database atau data warehouse. – Knowledge base – Data mining engine. – Pattern evolution module. – Graphical user interface.
Langkah langkah dalam data mining
a. Pembersihan data. Biasanya terdapat data yang kurang bagus untuk dimasukkan dalam kelengkapan data perusahaan karena hanya akan dianggap tidak valid bahkan untuk data yang hilang. Sehingga data yang seperti itu lebih baik dibuang.
b. Integrasi data
c. Transformasi data : Beberapa teknik data mining memerlukan format data yang khusus sebelum bisa digunakan dan disebarluaskan. Dalam tahap ini, dilakukan pula pemilihan data yang dibutuhkan oleh teknik data mining yang akan dipakai. Tahap inilah yang akan menentukan kualitas dari data mining.
d. Aplikasi teknik data mining
Ini merupakan salah satu langkah dari proses data mining. Gunakan teknik data mining yang sesuai dengan hasil yang dibutuhkan.
e. Evaluasi pola yang ditemukan: Dalam tahap ini hasil dari teknik data mining berupa pola pola yang khas maupun model prediksi dievaluasi untuk menilai apakah hipotesis yang ada memang tercapai.
e. Presentasi pola
Tahap terakhir dari proses data mining adalah bagaimana formulasi keputusan atau aksi dari hasil analisis dari data mining. Dalam presentasi ini, visualisasi juga dapat membantu mengkomunikasikan hasil data mining.
Cotoh data mining
Contoh Data Mining
Sebagai cabang ilmu baru di bidang komputer (lihat artikel sebelumnya berjudul ‘Data Mining’) cukup banyak penerapan yang dapat dilakukann oleh Data Mining. Apalagi ditunjang ke-kaya-an dan ke-anekaragam-an berbagai bidang ilmu (artificial intelligence, database, statistik, pemodelan matematika, pengolahan citra dsb.) membuat penerapan data mining menjadi makin luas. Di bidang apa saja penerapan data mining dapat dilakukan? Artikel singkat ini berusaha memberikan jawabannya.
Analisa Pasar dan Manajemen
Untuk analisa pasar, banyak sekali sumber data yang dapat digunakan seperti transaksi kartu kredit, kartu anggota club tertentu, kupon diskon, keluhan pembeli, ditambah dengan studi tentang gaya hidup publik.
Beberapa solusi yang bisa diselesaikan dengan data mining diantaranya:
• Menembak target pasar
Data mining dapat melakukan pengelompokan (clustering) dari model-model pembeli dan melakukan klasifikasi terhadap setiap pembeli sesuai dengan karakteristik yang diinginkan seperti kesukaan yang sama, tingkat penghasilan yang sama, kebiasaan membeli dan karakteristik lainnya.
• Melihat pola beli pemakai dari waktu ke waktu
Data mining dapat digunakan untuk melihat pola beli seseorang dari waktu ke waktu. Sebagai contoh, ketika seseorang menikah bisa saja dia kemudian memutuskan pindah dari single account ke joint account (rekening bersama) dan kemudian setelah itu pola beli-nya berbeda dengan ketika dia masih bujangan.
• Cross-Market Analysis
Kita dapat memanfaatkan data mining untuk melihat hubungan antara penjualan satu produk dengan produk lainnya. Berikut ini saya sajikan beberapa contoh:
o Cari pola penjualan Coca Cola sedemikian rupa sehingga kita dapat mengetahui barang apa sajakah yang harus kita sediakan untuk meningkatkan penjualan Coca Cola?
o Cari pola penjualan IndoMie sedemikian rupa sehingga kita dapat mengetahui barang apa saja yang juga dibeli oleh pembeli IndoMie. Dengan demikian kita bisa mengetahui dampak jika kita tidak lagi menjual IndoMie.
o Cari pola penjualan
• Profil Customer
Data mining dapat membantu Anda untuk melihat profil customer/pembeli/nasabah sehingga kita dapat mengetahui kelompok customer tertentu suka membeli produk apa saja.
• Identifikasi Kebutuhan Customer
Anda dapat mengidentifikasi produk-produk apa saja yang terbaik untuk tiap kelompok customer dan menyusun faktor-faktor apa saja yang kira-kira dapat menarik customer baru untuk bergabung/membeli.
• Menilai Loyalitas Customer
VISA International Spanyol menggunakan data mining untuk melihat kesuksesan program-program customer loyalty mereka. Anda bisa lihat di www.visa.es/ingles/info/300300.html
• Informasi Summary
Anda juga dapat memanfaatkan data mining untuk membuat laporan summary yang bersifat multi-dimensi dan dilengkapi dengan informasi statistik lainnya.
Analisa Perusahaan dan Manajemen Resiko
• Perencanaan Keuangan dan Evaluasi Aset
Data Mining dapat membantu Anda untuk melakukan analisis dan prediksi cash flow serta melakukan contingent claim analysis untuk mengevaluasi aset. Selain itu Anda juga dapat menggunakannya untuk analisis trend.
• Perencanaan Sumber Daya (Resource Planning)
Dengan melihat informasi ringkas (summary) serta pola pembelanjaan dan pemasukan dari masing-masing resource, Anda dapat memanfaatkannya untuk melakukan resource planning.
• Persaingan (Competition)
o Sekarang ini banyak perusahaan yang berupaya untuk dapat melakukan competitive intelligence. Data Mining dapat membantu Anda untuk memonitor pesaing-pesaing Anda dan melihat market direction mereka.
o Anda juga dapat melakukan pengelompokan customer Anda dan memberikan variasi harga/layanan/bonus untuk masing-masing grup.
o Menyusun strategi penetapan harga di pasar yang sangat kompetitif. Hal ini diterapkan oleh perusahaan minyak REPSOL di Spanyol dalam menetapkan harga jual gas di pasaran.
Telekomunikasi
Sebuah perusahaan telekomunikasi menerapkan data mining untuk melihat dari jutaan transaksi yang masuk, transaksi mana sajakah yang masih harus ditangani secara manual (dilayani oleh orang). Tujuannya tidak lain adalah untuk menambah layanan otomatis khusus untuk transaksi-transaksi yang masih dilayani secara manual. Dengan demikian jumlah operator penerima transaksi manual tetap bisa ditekan minimal.
Keuangan
Financial Crimes Enforcement Network di Amerika Serikat baru-baru ini menggunakan data mining untuk me-nambang trilyunan dari berbagai subyek seperti property, rekening bank dan transaksi keuangan lainnya untuk mendeteksi transaksi-transaksi keuangan yang mencurigakan (seperti money laundry). Mereka menyatakan bahwa hal tersebut akan susah dilakukan jika menggunakan analisis standar. Anda bisa lihat di www.senate.gov/~appropriations/treasury/testimony/sloan.htm. Mungkin sudah saatnya juga Badan Pemeriksa Keuangan Republik Indonesia menggunakan teknologi ini untuk mendeteksi aliran dana BLBI.
Asuransi
Australian Health Insurance Commision menggunakan data mining untuk mengidentifikasi layanan kesehatan yang sebenarnya tidak perlu tetapi tetap dilakukan oleh peserta asuransi. Hasilnya? Mereka berhasil menghemat satu juta dollar per tahunnya. Anda bisa lihat di www.informationtimes.com.au/data-sum.htm. Tentu saja ini tidak hanya bisa diterapkan untuk asuransi kesehatan, tetapi juga untuk berbagai jenis asuransi lainny
Kelebihan dan kekurangan
Kelebihan Data Mining :
1. Kemampuan dalam mengolah data dalam jumlah yang besar.
2. Pencarian Data secara otomatis.

Kekurangan Data Mining :
1. Kendala Database ( Garbage in garbage out ).
2. Tidak bisa melakukan analisa sendiri.

Kesimpulan
Data mining adalah disiplin ilmu yang mempelajari metode untuk mengekstrak pengetahuan atau menemukan pola dari suatu data sehingga sering disebut knowledge discovery in database






DATA MINING

Posted by Unknown
DATA MINING
Pengertian data mining?
Pengertian Data Mining menurut Para Ahli
Pengertian data mining berdasarkan (JK06) adalah proses mengekstraksi pola-pola yang menarik (tidak remeh-temeh, implisit, belum diketahui sebelumnya, dan berpotensi untuk bermanfaat) dari data yang berukuran besar. Definisi data mining dari Adelman. pengertian data mining adalah proses pencarian pola data yang tidak diketahui atau tidak diperkirakan sebelumnya.
Pengertian data mining menurut Gartner Group, data mining sebagai suatu proses menemukan hubungan yang berarti, pola, dan kecenderungan dengan memeriksa dalam sekumpulan besar data yg tersimpan dalam penyimpanan dengan menggunakan teknik pengenalan pola seperti teknik statisik dan matematika.
Pramudiono (2006) mengemukakan bahwa pengertian data mining adalah adalah serangkaian proses untuk menggali nilai tambah dari suatu kumpulan data berupa pengetahuan yang selama ini tidak diketahui secara manual.
Lalu Larose berpendapat bahwa data mining adalah bidang yang digabung dari beberapa bidang keilmuan yang menyatukan teknik dari pembelajaran mesin, pengenalan pola, statistik, database, dan visualisasi untuk pengenalan permasalahan pengambilan informasi dari database yang besar.
Pengertian data mining menurut Jiawei bahwa  data mining merupakan pemilihan atau “menambang” pengetahuan dari jumlah data yang banyak.
Definisi data mining menurut Berry bahwa data mining adalah aktivitas mengeksplorasi dan menganalisis data jumlah yang besar untuk menemukan pattern (pola) dan rule (aturan) yang berarti.
Hoffer dan McFadden mengemukakan bahwa pengertian  data mining adalah penemuan pengetahuan dengan menggunakan teknik-teknik yang tergabung dari statistik, tradisional, kecerdasan dan grafik komputer.
Pengertian data mining menurut Turban,dkk.(2005) data mining adalah proses yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan mesin learning untuk mengekstraksi dan mengidentifikasi informasi yang bermanfaat dan pengetahuan yang terkait berbagai database besar (baca pengertian database).
Istilah Istilah khusus dalam Data Mining
         Data cleaning (untuk menghilangkan noise data yang tidak konsisten)
         Data integration (di mana sumber data yang terpecah dapat disatukan)
         Data selection (di mana data yang relevan dengan tugas analisis dikembalikan ke dalam database)
         Data transformation (di mana data berubah atau bersatu menjadi bentuk yang tepat untuk menambang dengan ringkasan performa atau operasi agresi)
         Data mining (proses esensial di mana metode yang intelejen digunakan untuk mengekstrak pola data) – Pattern evolution (untuk mengidentifikasi pola yang benar-benar menarik yang mewakili pengetahuan berdasarkan atas beberapa tindakan yang menarik)
         Knowledge presentation (di mana gambaran teknik visualisasi dan pengetahuan digunakan untuk memberikan pengetahuan yang telah ditambang kpada user).
Rancangan bangun dari data mining yang khas memiliki beberapa komponen utama yaitu : – Database, data warehouse, atau tempat penyimpanan informasi lainnya. – Server database atau data warehouse. – Knowledge base – Data mining engine. – Pattern evolution module. – Graphical user interface.
Langkah langkah dalam data mining
a. Pembersihan data. Biasanya terdapat data yang kurang bagus untuk dimasukkan dalam kelengkapan data perusahaan karena hanya akan dianggap tidak valid bahkan untuk data yang hilang. Sehingga data yang seperti itu lebih baik dibuang.
b. Integrasi data
c. Transformasi data : Beberapa teknik data mining memerlukan format data yang khusus sebelum bisa digunakan dan disebarluaskan. Dalam tahap ini, dilakukan pula pemilihan data yang dibutuhkan oleh teknik data mining yang akan dipakai. Tahap inilah yang akan menentukan kualitas dari data mining.
d. Aplikasi teknik data mining
Ini merupakan salah satu langkah dari proses data mining. Gunakan teknik data mining yang sesuai dengan hasil yang dibutuhkan.
e. Evaluasi pola yang ditemukan: Dalam tahap ini hasil dari teknik data mining berupa pola pola yang khas maupun model prediksi dievaluasi untuk menilai apakah hipotesis yang ada memang tercapai.
e. Presentasi pola
Tahap terakhir dari proses data mining adalah bagaimana formulasi keputusan atau aksi dari hasil analisis dari data mining. Dalam presentasi ini, visualisasi juga dapat membantu mengkomunikasikan hasil data mining.
Cotoh data mining
Contoh Data Mining
Sebagai cabang ilmu baru di bidang komputer (lihat artikel sebelumnya berjudul ‘Data Mining’) cukup banyak penerapan yang dapat dilakukann oleh Data Mining. Apalagi ditunjang ke-kaya-an dan ke-anekaragam-an berbagai bidang ilmu (artificial intelligence, database, statistik, pemodelan matematika, pengolahan citra dsb.) membuat penerapan data mining menjadi makin luas. Di bidang apa saja penerapan data mining dapat dilakukan? Artikel singkat ini berusaha memberikan jawabannya.
Analisa Pasar dan Manajemen
Untuk analisa pasar, banyak sekali sumber data yang dapat digunakan seperti transaksi kartu kredit, kartu anggota club tertentu, kupon diskon, keluhan pembeli, ditambah dengan studi tentang gaya hidup publik.
Beberapa solusi yang bisa diselesaikan dengan data mining diantaranya:
• Menembak target pasar
Data mining dapat melakukan pengelompokan (clustering) dari model-model pembeli dan melakukan klasifikasi terhadap setiap pembeli sesuai dengan karakteristik yang diinginkan seperti kesukaan yang sama, tingkat penghasilan yang sama, kebiasaan membeli dan karakteristik lainnya.
• Melihat pola beli pemakai dari waktu ke waktu
Data mining dapat digunakan untuk melihat pola beli seseorang dari waktu ke waktu. Sebagai contoh, ketika seseorang menikah bisa saja dia kemudian memutuskan pindah dari single account ke joint account (rekening bersama) dan kemudian setelah itu pola beli-nya berbeda dengan ketika dia masih bujangan.
• Cross-Market Analysis
Kita dapat memanfaatkan data mining untuk melihat hubungan antara penjualan satu produk dengan produk lainnya. Berikut ini saya sajikan beberapa contoh:
o Cari pola penjualan Coca Cola sedemikian rupa sehingga kita dapat mengetahui barang apa sajakah yang harus kita sediakan untuk meningkatkan penjualan Coca Cola?
o Cari pola penjualan IndoMie sedemikian rupa sehingga kita dapat mengetahui barang apa saja yang juga dibeli oleh pembeli IndoMie. Dengan demikian kita bisa mengetahui dampak jika kita tidak lagi menjual IndoMie.
o Cari pola penjualan
• Profil Customer
Data mining dapat membantu Anda untuk melihat profil customer/pembeli/nasabah sehingga kita dapat mengetahui kelompok customer tertentu suka membeli produk apa saja.
• Identifikasi Kebutuhan Customer
Anda dapat mengidentifikasi produk-produk apa saja yang terbaik untuk tiap kelompok customer dan menyusun faktor-faktor apa saja yang kira-kira dapat menarik customer baru untuk bergabung/membeli.
• Menilai Loyalitas Customer
VISA International Spanyol menggunakan data mining untuk melihat kesuksesan program-program customer loyalty mereka. Anda bisa lihat di www.visa.es/ingles/info/300300.html
• Informasi Summary
Anda juga dapat memanfaatkan data mining untuk membuat laporan summary yang bersifat multi-dimensi dan dilengkapi dengan informasi statistik lainnya.
Analisa Perusahaan dan Manajemen Resiko
• Perencanaan Keuangan dan Evaluasi Aset
Data Mining dapat membantu Anda untuk melakukan analisis dan prediksi cash flow serta melakukan contingent claim analysis untuk mengevaluasi aset. Selain itu Anda juga dapat menggunakannya untuk analisis trend.
• Perencanaan Sumber Daya (Resource Planning)
Dengan melihat informasi ringkas (summary) serta pola pembelanjaan dan pemasukan dari masing-masing resource, Anda dapat memanfaatkannya untuk melakukan resource planning.
• Persaingan (Competition)
o Sekarang ini banyak perusahaan yang berupaya untuk dapat melakukan competitive intelligence. Data Mining dapat membantu Anda untuk memonitor pesaing-pesaing Anda dan melihat market direction mereka.
o Anda juga dapat melakukan pengelompokan customer Anda dan memberikan variasi harga/layanan/bonus untuk masing-masing grup.
o Menyusun strategi penetapan harga di pasar yang sangat kompetitif. Hal ini diterapkan oleh perusahaan minyak REPSOL di Spanyol dalam menetapkan harga jual gas di pasaran.
Telekomunikasi
Sebuah perusahaan telekomunikasi menerapkan data mining untuk melihat dari jutaan transaksi yang masuk, transaksi mana sajakah yang masih harus ditangani secara manual (dilayani oleh orang). Tujuannya tidak lain adalah untuk menambah layanan otomatis khusus untuk transaksi-transaksi yang masih dilayani secara manual. Dengan demikian jumlah operator penerima transaksi manual tetap bisa ditekan minimal.
Keuangan
Financial Crimes Enforcement Network di Amerika Serikat baru-baru ini menggunakan data mining untuk me-nambang trilyunan dari berbagai subyek seperti property, rekening bank dan transaksi keuangan lainnya untuk mendeteksi transaksi-transaksi keuangan yang mencurigakan (seperti money laundry). Mereka menyatakan bahwa hal tersebut akan susah dilakukan jika menggunakan analisis standar. Anda bisa lihat di www.senate.gov/~appropriations/treasury/testimony/sloan.htm. Mungkin sudah saatnya juga Badan Pemeriksa Keuangan Republik Indonesia menggunakan teknologi ini untuk mendeteksi aliran dana BLBI.
Asuransi
Australian Health Insurance Commision menggunakan data mining untuk mengidentifikasi layanan kesehatan yang sebenarnya tidak perlu tetapi tetap dilakukan oleh peserta asuransi. Hasilnya? Mereka berhasil menghemat satu juta dollar per tahunnya. Anda bisa lihat di www.informationtimes.com.au/data-sum.htm. Tentu saja ini tidak hanya bisa diterapkan untuk asuransi kesehatan, tetapi juga untuk berbagai jenis asuransi lainny
Kelebihan dan kekurangan
Kelebihan Data Mining :
1. Kemampuan dalam mengolah data dalam jumlah yang besar.
2. Pencarian Data secara otomatis.

Kekurangan Data Mining :
1. Kendala Database ( Garbage in garbage out ).
2. Tidak bisa melakukan analisa sendiri.

Kesimpulan
Data mining adalah disiplin ilmu yang mempelajari metode untuk mengekstrak pengetahuan atau menemukan pola dari suatu data sehingga sering disebut knowledge discovery in database






DATA MINING

Posted by Unknown
Diberdayakan oleh Blogger.

Copyright © Shikamaru Nara -Black Rock Shooter- Powered by Blogger - Designed by Johanes Djogan